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Abstract

We prove the Padé (Stieltjes) summability of the perturbation series of any
energy level En,1(β), n ∈ N, of the cubic anharmonic oscillator, H1(β) =
p2 +x2 + i

√
βx3, as suggested by the numerical studies of Bender and Weniger.

At the same time, we give a simple proof of the positivity of every level
of the PT -symmetric Hamiltonian H1(β) for positive β (Bessis–Zinn Justin
conjecture). The n zeros, of a state ψn,1(β), stable at β = 0, are confined
for β on the cut complex plane, and are related to the level En,1(β) by the
Bohr–Sommerfeld quantization rule (semiclassical phase-integral condition).
We also prove the absence of non-perturbative eigenvalues and the simplicity
of the spectrum of our Hamiltonians.

PACS numbers: 03.65.Sq, 02.30.Lt, 03.65.Ge

1. Introduction

The anharmonic oscillators, and in particular the cubic one, are non-solvable quantum models,
interesting due to their simplicity. The Hamiltonians considered have compact resolvents
and their spectrum is discrete. New interest comes from the theory of the PT -symmetric
Hamiltonians. In particular, the interest is addressed to the summability of the perturbation
series, also in connection to similar problems in quantum field theory.

Many years ago [1], Padé summability (PS) of the perturbation series of the energy levels
of the quartic anharmonic oscillator with Hamiltonian K4,1(β) = p2 + x2 + βx4 was proved.

Some years later [2], the Borel summability of the perturbation series of each eigenvalue
En,α(β), n ∈ N, of the cubic anharmonic oscillator,

Hα(β) = p2 + αx2 + i
√

βx3, (1)

for a fixed α > 0, was proved. This result was later extended [3], giving the distributional
Borel summability [4] of the perturbation series, in the case of negative β.
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http://dx.doi.org/10.1088/1751-8113/42/42/425208
mailto:grecchi@dm.unibo.it
mailto:marco.maioli@unimore.it
mailto:martinez@dm.unibo.it
http://stacks.iop.org/JPhysA/42/425208


J. Phys. A: Math. Theor. 42 (2009) 425208 V Grecchi et al

The conjecture of Bessis–Zinn Justin (BZJ) was proved by Dorey et al [12] at α = 0.
Shin [5] extended the proof to α ∈ R, and proved the positivity of the eigenvalues {En,α(β)}n
for α � 0, β > 0. Strangely enough, Bessis did not suggest, as far as we know, that the reality
of the eigenvalues was a consequence of his loved PS. Some years later, Bender and Weniger
gave numerical evidence of PS [9].

The BZJ conjecture was later extended by Bender and Boettcher (BB) [7], to the family
of PT -symmetric (PTS) Hamiltonians,

HN,α(1) = p2 + αx2 − (ix)N,

α � 0, N � 2, with analytic eigenfunctions φ(z), where z = x + iy, vanishing at infinity on
the two Stokes angular sectors of the complex plane,

SN
±1 =

{∣∣∣∣arg(iz) ± 2π

(N + 2)

∣∣∣∣ <
π

(N + 2)

}
. (2)

The last conjecture was proved, as part of a more general result, by Vladimir Bouslaev and
one of us [10] (see also [11]), in the relevant case of N = 4.

Shin has proved the BB conjecture, in the general case, for α � 0 [5].
From now on, we restrict the discussion to the cubic oscillator. The family of operators

H1(β) is an analytic family of type A on the cut plane Cc = {β ∈ C;β �= 0, |arg(β) = θ | <

π}, and we have the spectral equivalence [13],

H1(β) ∼ α−1/2Hα(1), (3)

where α = β−2/5. For β at the hedges of the cut, for instance, β = b exp(−iπ) = −b − i0+,
b > 0, the mechanical problem defined by the formal Hamiltonian H1(β) is incomplete
in both classical and quantum cases and can be defined by the physical hypothesis of the
disappearance of the particle when it reaches infinity. In the quantum case, this means
defining the Hamiltonian by the Gamow condition at −∞ [2]. This definition satisfies
the condition of subdominant behavior on the sectors S±1(−π) (6), and the continuity in
β ∈ C̄c = {β ∈ C;β �= 0, |arg(β) = θ | � π}, extending the unitary equivalence (3).
The eigenvalues have the meaning of resonances and the eigenfunctions have the meaning
of metastable states for the dynamical problem. Thus, we expect, and we prove, a negative
imaginary part of the eigenvalues, related, in the usual way, to the lifetime of the metastable
states.

We consider the eigenfunction ψn,α,β(z), for a fixed α > 0, where n ∈ N is the number
of its nodes, and β is on the complex cut plane Cc. The n nodes, numerically studied in
[8] for positive β, are stable at β = 0 and are the only zeros on the lower half complex
plane C− = {z ∈ C; �(z) = y < 0}. On the other side [6], there are no zeros on the strip
0 � �(z) � y+ = 2α�√

β/3b.
We use the Loeffel–Martin method and the complex semiclassical Sibuya picture

[6, 14], to prove the confinement of the nodes. The eigenvalues are bounded, in the suitable
scaling, because of the Bohr–Sommerfeld quantization rule (24), (25) and the invariance of
the number of nodes. This fact forbids both the disappearance at infinity of the perturbative
eigenvalues and the appearance of non-perturbative eigenvalues at a non-zero parameter β.
The total exclusion of non-perturbative eigenvalues comes from the existence of only one
point zd �= 0, where the potential is stationary V ′(zd) = 0. We prove that the top resonances
localized near this point are not the eigenvalues of our Hamiltonian.

The crossings of eigenvalues and the branch-point singularities are forbidden by the
unique characterization of the eigenfunctions by the number of their nodes, and the spectrum
is simple in both the geometric and algebraic sense (see [16] vol. IV).

This means that the generalized eigenvectors are ordinary eigenvectors.
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Let us remember that we have the extended PT symmetry (see [2]) of the complex
Hamiltonians,

H1(β) = PH ∗
1 (β̄)P, where Pψ(x) = ψ(−x).

The isolation and analyticity of each eigenvalue on the cut plane Cc and the unique
sum of the perturbation series imply the extended PT symmetry of the eigenfunctions,
ψn,1,β(x) = ψ̄n,1,β̄ (−x), and eigenvalues En,1(β) = Ēn,1(β̄). The identity, obtained by
complex scaling for β �= 0, |arg(β)| < π,

{En,1(β) = α−1/2En,α(1)}n∈N, (4)

where α = β−2/5 allows the global analytic continuation on the Riemann surface of β1/5, of
the set of the eigenvalues. In particular, we prove the power law behavior of the eigenvalues
at β = ∞ by the scaling law (4) and the analyticity of {En,α(1)}n at α = 0.

We prove the PS of the perturbation series of each eigenvalue to the eigenvalue itself. In
order to be more precise, let us fix n ∈ N = {0, 1, 2, . . .}, and set the simplified notations for
the once subtracted eigenvalue, f (β) = (En,1(β) − En,1(0))/β, for any β on the cut complex
plane Cc. Thus, for β ∈ Cc, we have the Stieltjes representation for f (β), and the asymptotics
for small b = |β| given by the formal perturbation series [2]

f (β) =
∫ ∞

0

1

(1 + βλ)
ρ(λ) dλ ∼ 
(β) =

∞∑
k=0

ck+1β
k,

where ρ(λ) is non-negative, and {cj }j∈N are the perturbation coefficients of En,1(β).
Thus, we prove, in a new way, the positivity of the eigenvalues, for positive β,

En,1(β) = En,1(0) + βf (β) = En,1(0) + β

∫ ∞

0

1

(1 + βλ)
ρ(λ) dλ � En,1(0) > 0.

The PS of the perturbation series to the eigenvalue is defined by the limit

f (β) = lim
k→∞

Rk
k (β),

where Rk
k(β) = Pk(β)/Qk(β) are the diagonal Padé approximants, Pk(β), Qk(β) are the

polynomials of order k, with Qk(0) = 1, completely defined by the asymptotics for |β| small∣∣Rk
k(β) − 
2k+1(β)

∣∣ = O(|β|2k+1),

where 
k(β) = ∑k−1
j=0 cj+1β

j .
The semiclassical behavior, for large positive λ, of the discontinuity

ln(ρ(λ)) = −C−1λ(1 + O(ln(λ)/λ)),

where C = 15/8 agrees with the asymptotics of the perturbation coefficients for large j , as
computed in [9], for n = 0:

cj = (−1)j+14
√

15Cj(2π)−3/2�(j + 1/2)(1 + O(1/j)).

For numerical aspects, as the interesting similarity of this perturbation series with one of the
quartic anharmonic oscillator, see [9].

In section 2 we consider the stability, analyticity and asymptotics of the eigenvalues and
the nodes of the eigenfunctions for small |β|. In section 3 we confine the nodes on the lower
complex half plane and we extend the results of section 2. In section 4 we prove the stability
of the nodes for a small parameter. In section 5 we prove the stability of the nodes for a large
parameter. In section 6 we prove the limitation of an eigenvalue for bounded parameters. In
section 7 we prove the absence of non-perturbative eigenvalues. In section 8 we prove the
power law behavior at infinity in the parameter. In section 9 we prove the Padé summability
of the perturbation series.
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2. Stability of the nodes at β = 0

From now on, we call b = |β|, and, for b > 0, θ = arg(β), so that

β = b exp(iθ).

For symmetry reasons we can restrict ourself to negative θ , −π � θ � 0, (the case 0 � θ � π

is equivalent). Let us consider the analytic family of type A of compact resolvent operators,

Hα(β), (5)

on the domain D = D(p2) ∩ D(x3) for fixed α ∈ C, β on the cut plane

Cc = {β ∈ C; b > 0, |θ | < π, }
([2], theorem 2.9).

We fix, for example, α = 1. The eigenvalue En,1(β), for a fixed n = 0, 1, . . . of H1(β),
is also an eigenvalue of the operator α1/2Hα(b), En,1(β) = α1/2En,α(b) (the index n is the
number of stable zeros (nodes) of the eigenfunction) where

α = (b/β)2/5 = exp(−2iθ/5).

In particular En,1(b exp(±π)) = √
αEn,α(b), where α = exp(∓2iπ/5).

Let us recall [14] the five Stokes angular sectors of the complex z plane, for β �= 0,

Sk = Sk(θ) =
{
z ∈ C;

∣∣∣∣arg(iz) +
θ

10
− 2kπ

5

∣∣∣∣ <
π

5

}
, (6)

−2 � k � 2. In the case of θ = −π,

S−1(θ) =
{
z ∈ C;−π < arg(z) < −3π

5

}
,

where arg(z) = −π , that is x < 0 is on the upper border of the sector, where the subdominant
solution on the sector satisfies the Gamow condition.

For β on the closed cut plane, Cc = {β ∈ C; b > 0, |θ | � π}, we have the spectral
equivalence for scaling:

Hα(b) ∼ (α)−1/2H1(β), (7)

where α = exp(−2iθ/5) if H1(β), at θ = −π , is defined by the Gamow condition at −∞.
In place of the limit of H1(β), as β → 0, we consider the norm resolvent limit

Hα(b) → Hα(0), for α = exp(−2iθ/5) fixed, as b → 0. Let us note that Hα(0), for
α �= 0, is defined on the domain D = D(p2) ∩ D(x2) (see theorem 2.13 on [2], and its
extension on [3]).

We have the result of stability, simplicity and strong asymptotics of the eigenvalues:

Theorem 1. For n = 0, 1, . . . let En,1(β) be an eigenvalue, and let {ck}k∈N be its perturbation
coefficients,

f (β) = (En,1(β) − En,1(0))

β
.

Then, there exists bn > 0 such that f (β) is analytic on the bounded sector,

�n = {β ∈ C; 0 < |β| < bn, |arg(β)| � π},
and there exist numbers A,C > 0, such that

|f (β) − 
N(β)| < (ACNN !|β|N),

where 
N(β) = ∑N−1
k=0 ck(β)k , uniformly for N − 1 ∈ N and β ∈ �n.
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Proof. See [2], theorem 3.2 (where β is our i
√

β) extended in [3] (where our case is at
k = 1). �

Lemma 1: The stability of the nodes. Together with the stability of the eigenvalues, we
have the stability of the eigenfunctions. In particular, we are interested in the stability of their
zeros (nodes) at β = 0.

We have the limit of the eigenvalue En,1(β) → En,1(0) and the strong limit of the
eigenvector ψn,1,β → ψn,1,0 as b → 0+, for β ∈ �n, at θ fixed. Thus, we have the limit
ψn,1,β(z) → ψn,1,0(z) as b → 0+, for β ∈ �n, θ fixed, uniformly for z on a compact set of the
complex plane.

Proof. Since the perturbed eigenfunctions are entire, as the unperturbed ones, we have the
stability of the n zeros of ψn,1,0(z) for b small.

For any fixed regular closed curve γ = ∂� on the complex plane, oriented in the positive
sense, turning around the short Stokes line, S = [x−, x+], where x± = ±√

En(1, 0) =
±√

(2n + 1), we have the constant number of zeros in �n (as in the phase-integral
quantization):

n = 1

2iπ

∮
γ

ψ ′
n,1,β(z)

ψn,1,β(z)
dz = 1

2iπ

∮
γ

ψ ′
n,1,0(z)

ψn,1,0(z)
dz,

for β ∈ �′
n, where

�′
n = {β ∈ C; 0 < b � b′

n, |θ | � π},
and 0 < b′

n � bn. Let us set ψβ = ψn,1,β and ψ0 = ψn,1,0 and apply the theorem of Rouché
[18]. Since the zeros of ψ0(z) are not on γ, there exists M > 0, such that |ψ0| � M > 0
uniformly on γ . Moreover, |ψβ(z) − ψ0(z)| → 0 uniformly for z on the compact γ , because
of the analyticity. Thus, we have |ψ0(z)| > |ψβ(z) − ψ0(z)| for z on γ and for β ∈ �′

n

⋃{0},
so that the Rouché theorem applies. �

We shall see (theorem 2) that, for β ∈ �′
n, the n nodes are confined on �

⋂
C−, where

C− = {z ∈ C; �(z) < 0}, moreover, they are the only zeros of ψ(z) on C−.

3. The confinement of the nodes on a half plane

Let us consider the spectral equivalence for scaling x → x/
√

b:

H1,1(β) ∼ b−1Hh̄,1(β/b) = h̄−1Hh̄,1(β
′) = h̄−1Hh̄(θ),

where

Hh̄,α(β) = h̄2p2 + αx2 + i
√

βx3 (8)

is the semiclassical three-parameter Hamiltonian, and

β ′ = h̄−1β = b−1β = exp(iθ).

We have the identity of the eigenvalues:

E = En,1(β) = h̄−1En,h̄,1(h̄
−1β) = h̄−1Enn, h̄(θ) = h̄−1E′,

and the four-parameter wavefunction is

ψn,h̄,θ (x) = b−1/4ψn,1,1,β(x/
√

b).

From now on, we redefine the parameters as

Hh̄,1(β) = Hh̄(θ), En,h̄,1(β) = En,h̄(θ), (9)

5
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ψn,h̄,1,β(x) = ψn,h̄,θ (x), (10)

where β = exp(iθ), −π � arg(β) = θ � 0, (the condition 0 � arg(β) = θ � π is
equivalent). The stability result of perturbation theory for an n ∈ N, h̄ = b = |β| small,
implies

|E = En,h̄(θ)| = O(h̄), |zj,n|, |z±(E)| = O(
√

h̄),

where {zj,n}j are the stable n nodes of ψn,h̄,θ (x). We consider the semiclassical operator

Hh̄(θ) = h̄2p2 + x2 + i exp(iθ/2)x3 = h̄2p2 + x2 + i
√

β ′x3,

and the eigenvalue En,h̄(θ), with eigenfunction ψn,h̄,θ , where n = 0, 1, . . . and |β| = 1. We
call z = x + iy the x variable extended to the complex plane. We consider the eigenvalues
E = En,h̄(θ), and the eigenfunctions ψE(z) = ψn,h̄,θ (z), where the label n is the number of
zeros stable at h̄ = 0.

We now prove the existence of a strip free from zeros of the eigenfunctions (see also [6]):

Theorem 2. On the strip,

Z(θ) =
{
z ∈ C; 0 � �(z) � y+ = y+(θ) = 2�√

β ′

3
= 2

3
cos

(
θ

2

)}
,

there are no zeros of any eigenfunction ψ(z) of Hh̄(θ), where θ = arg(β), −π � θ � 0.

Proof. Let us, at first, set −π < θ � 0, and consider the translated operator
Hh̄,y(θ) = h̄2p2 + Vy, where

Vy = Vy(x) = (x + iy)2 + i
√

β ′(x + iy)3

= x2 − y2 − 3
√

β ′yx2 +
√

β ′y3 + 2iyx − 3i
√

β ′y2x + i
√

β ′x3.

Let ψy(x) = ψE(x + iy) be an eigenfunction with eigenvalue E. We have

ψE(x + iy) = ψy(x) �= 0, ‖ψy‖ = 1,

for every x ∈ R, for 0 � y � y+ = 2�(
√

β ′)/3.
For 0 � y � y+,

− h̄2�
(

ψy(r)
dψy(r)

dr

)
=

∫ ∞

r

�(Vy(x) − E)|ψy(x)|2 dx > 0, (11)

or

− h̄2�
(

ψy(r)
dψy(r)

dr

)
= −

∫ r

−∞
�(Vy(x) − E)|ψy(x)|2 dx > 0, (12)

for any r ∈ R. �

The proof is based on the monotonicity of

f (x) = �(Vy(x) − E) = R(x3 − 3y2x) + 2xy − 3Iyx2 + c,

where R = �(
√

β), I = �(
√

β ′) and c is a constant, that is, the non-negativity of f ′(x),

f ′(x) = �(Vy(x) − E)′ = 3Rx2 − 6Iyx − 3Ry2 + 2y = Ax2 + Bx + C � 0,

where A = 3R,B = −6Iy, C = −3Ry2 + 2y. We impose the non-positivity of the
discriminant:

B2 − 4AC = 12y[3y − 2R] � 0,

6
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proved for

0 � y � y+ = 2R

3
= 2

3
cos

(
θ

2

)
.

We have the absence of zeros for 0 � �z � y+.

In the case of arg(β) = −π , we have the limits of equations (11), (12), and for any r ∈ R,

− h̄2�
(

ψ(r)
dψ(r)

dr

)
=

∫ ∞

r

�(V (x) − E)|ψE(x)|2 dx = −
∫ ∞

r

�(E)|ψE(x)|2 dx > 0,

or
∫ r

−∞
�(E)|ψE(x)|2 dx > 0, (13)

if �(E) �= 0. Thus, the nodes have imaginary part different from zero, if the imaginary part of
the eigenvalue is different from zero. Following is the case.

Lemma 2. An eigenvalue E(θ) = En,h̄(θ), n ∈ N, θ = −π, b > 0, of Hh̄(β), has a negative
imaginary part: �E(−π) < 0. On the other side, for θ = π, we have �E(π) > 0.

Proof. For arg(β) = −π fixed and −r large, the normalized wavefunction ψE , ‖ψE‖ = 1
satisfies the Gamow semiclassical condition. This means that the eigenfunction is proportional
to the Gamow solution

ψE = c−ψ−, where c− �= 0,

since ψE �= 0. The Gamow solution is defined by

h̄ψ ′
−(r)/ψ−(r) → −i

√
−V (r),

√
−V (r)|ψ−(r)|2 → 1,

as r → −∞, and is the continuation of the subdominant solution in the Stokes sector S1(−π)

to its upper border line arg(z) = −π. Thus, we have,

−�(E) = − h̄2∫ +∞
r

|ψE(x)|2 dx
�

(
|ψE(r)|2 ψ ′

E(r)

ψE(r)

)
∼ h̄∫ +∞

r
|ψE(x)|2 dx

√
−V (r)|ψE(r)|2 → h̄|c−|2 > 0, (14)

as r → −∞, implying �(E) < 0. �

In particular, we know that the width of these ‘resonances’ is exponentially small:
−�(En) = O(exp(−A(0))/h̄), for any fixed n ∈ N, where

A(0) = 2
∫ x−

x0

π0(x) dx = 2
∫ 0

−1

√
x2 + x3 dx = 8

15
(15)

is the action of the forbidden classical motion on the barrier at E = 0.

In the general case, the nodes stay on the half plane:

C− = {z ∈ C; �(z) < 0}.

Theorem 3. For small h̄ > 0, −π � θ � 0, all the stable n nodes of an eigenfunction ψE(z)

of Hh̄(θ), with eigenvalue E = En,h̄(θ), are in C−.

Proof. Let now −π < θ � 0. We have the result from theorem 1 and theorem 2. The case
θ = −π is proved by (13) and lemma 2. �

7



J. Phys. A: Math. Theor. 42 (2009) 425208 V Grecchi et al

Definition 1. We define the half plane

C
+
−(θ) = {

z ∈ C; �(z) � y+(θ) = 2
3 cos(θ/2)

}
,

the half plane containing only the stable zeros {zn,j }j of the eigenfunction ψn,h̄,θ (z), for any
n ∈ N, h̄ > 0, |θ | � π .

We now give a confinement of the nodes on the lower half plane.
Let f = (1/

√
β ′) = exp(−iθ/2), g = f E, for y < 0,

− h̄2�
(

−if ψy(r)
dψy(r)

dr

)
=

∫ ∞

r

�(−if Vy(x) + ig)|ψy(x)|2 dx < 0 (16)

for x > x+ and

− h̄2�
(

−if ψy(r)
dψy(r)

dr

)
= −

∫ r

−∞
�(−if Vy(x) + ig)|ψy(x)|2 dx > 0 (17)

for r < x−. Setting f = R + iI, R = cos(θ/2) > 0, I = − sin(θ/2) � 0, for −π < θ � 0,

�(g) = P > 0 we have

�(−if Vy(x) + ig) = (3y − R)x2 + 2Iyx + y2(R − y) + P < 0

for x > x+(y), x < x−(y), where

x±(y) = 1

R − 3y

(
Iy ±

√
I 2y2 + (y2(R − y) + P)(R − 3y)

)
.

We have x±(0−) = √
P/R (x±(y)/y) → ±(1/

√
3) for −y → ∞. For n, θ fixed,

E = En,h̄(θ) = O(h̄), P = O(h̄),

x±(0−) = O(
√

h̄). (18)

4. The semiclassical limitation of the nodes for small parameter

Let us consider the semiclassical three-parameter Hamiltonian (8)

Hh̄,α(β ′) = h̄2p2 + αx2 + i
√

β ′x3, (19)

with eigenvalues and eigenfunction

En,h̄,α(β ′), ψn,h̄,α,β ′(x) (20)

where β ′ = exp(iθ), β = h̄β ′, −π � arg(β) = θ � 0 (the condition 0 � arg(β) = θ � π is
equivalent).

Fixing a value of E, we get a Stokes complex [6]. A part of this complex is stable at
β = 0. In particular, for the unperturbed parameters,

α = 1, β = 0, E > 0,

we define the real line as the line of classical motion lc.
We divide the line of classical motion in the short Stokes line of allowed motion

S = S(E) = [x−, x+], x± = x±(E) = ±√
E and in the two anti-Stokes lines A± =

A±(E) = (x±,±∞).

It is easy to see that the line lc is continuous in E for E ∈ Cc, locally stable in β at β = 0,

and locally continuous for β ∈ Cc.
Now, we make the hypothesis that all the eigenvalues are perturbative. This hypothesis

will be proved later.
We fix n ∈ N.

8
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We consider E = En,h̄(θ), ψn,h̄,θ (z) for z ∈ C−, β = h̄ exp(iθ) ∈ �′
n. In this case we

know that there are n stable zeros (nodes) in C−. The question is whether there are other zeros.
We want to prove the absence of zeros in C− for large |z|, uniformly for β ∈ �′

n.
Moreover, we prove that, in this semiclassical scaling, the zeros vanish as h̄ → 0. This means
that the zeros of ψn,h̄,θ (z) on C−, for β ∈ �′

n, are the nodes.
The eigenfunction ψ(z) = ψn,h̄,θ (z) is an entire function and

(ψ(z), ψ ′(z)) → 0

as |z| → ∞, for arg(z) in each of the two Stokes angular sectors S±1(θ).
On the other side, ψ(z) is purely divergent in the other three sectors S0(θ), S±2(θ), and

has no zeros [14] in the full angular sector of the complex plane

S = S(θ) = S−2

⋃
S̄−1

⋃
S0

⋃
S̄1

⋃
S2 =

{
z ∈ C;

∣∣∣∣arg(iz) − θ

10

∣∣∣∣ < π

}
for large |z|. This fact is uniform for β = h̄ exp(iθ) in the compact �′

n.

Let us note that S− = C− ⊂ S(θ) for all θ, −π � θ � 0.

We know that |En,h̄(θ)| = O(h̄) as h̄ → 0, for n ∈ N fixed. Let us consider the
anti-momentum

πE(z) = πh̄,θ (z) =
√

V (θ, z) − En,h̄,θ , (21)

where V (β, z) = z2 +i
√

βz3, β = h̄ exp(iθ). There are three zeros of πE(z), the stable turning
points z±(E) |z±(E)| = O(

√
h̄), for E = O(h̄), and z0(E).

For −π < θ � 0, �(z0(E)) > 0 for E = O(h̄), h̄ being small enough.
The choice of the sign of πE(z) �= 0 is unique for z ∈ C−, and is defined by the action

integral
∫ z

z+
πE(z) dz > 0, along the anti-Stokes line A+. We have

f = fh̄,θ (z) → 1, where f (z) = h̄|ψ ′(z)|
|πE(z)||ψ(z)| , (22)

for any θ, −π < θ � 0, z ∈ C−, |z| > 0, or for θ = −π z �= −1, |z| > 0 and E = O(h̄) as
h̄ → 0.

Since there are no double zeros of the solution of the Schrödinger equation ψ(z), none of
the zeros of ψ(z) goes to (or comes from) infinity on the sector |arg(iz)| � π/2, for β ∈ �′

n.
Furthermore, for −π < θ � 0, all the zeros in C− vanish as h̄ → 0.

Remark 1. In the case θ = −π, there is a problem: z0 → −1, πE(−1) → 0, as h̄ → 0,

E → 0.

But this does not mean the presence of zeros on C−, near z = −1 for h̄ small. This point
is not trapping for the states of the problem.

We know that, for n ∈ N and 0 � θ > −π fixed, and small h̄ > 0, the only zeros in C−
are near the origin.

We prove that these zeros are not able to cross a barrier in order to approach z = −1 as
θ → −π.

The barrier is on the half circle γ = {z ∈ C; z + 1 = ε exp(iφ),−(π) � φ � (0)} for any
fixed ε, 1 > ε > 0. For n ∈ N fixed, we have fh̄,θ (z) → 1, uniformly for z ∈ γ, θ ∈ [−π, 0],
as h̄ → 0+. This means that for h̄ > 0 small, no zeros from a neighborhood of the origin can
reach a neighborhood of z = −1 as θ → −π+.

Thus, we have

Theorem 4. Let n ∈ N be fixed. β = h̄ exp(iθ) ∈ �′
n, E = En,h̄(θ), −π � θ � 0.

The n zeros {zn,j }j of the eigenfunction ψ(z) = ψn,h̄,θ (z) in the half plane S− are stable for
β = h̄ exp(iθ) ∈ �′

n, and vanish as O(
√

h̄) for h̄ → 0.

9
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5. The semiclassical limitation of the nodes for large parameter

Let us consider the three-parameter operators

Hh̄,α(β) = −h̄2p2 + αx2 + iβx3,

and the eigenvalues En,h̄,α(β), for n ∈ N. With a suitable scaling h̄ = β = 1, and,

Hα = H1,α(1) = p2 + Vα = p2 + αx2 + ix3,

with an eigenvalue and eigenfunction:

E = Eα = En,1,α(1), ψα(z) = ψn,1,α,1(z)

for fixed n = 0, 1, . . . and

α ∈ Bn, where Bn = {α ∈ C;α = 0, or 0 < a = |α| � an, |arg(α)| � 2π/5},
where an = (1/b′

n)
2/5 > 0 and b′

n is given in lemma 1. We have, E �= 0, |arg(E)| � π/2,

because of the numerical range and the uncertainty principle.
The eigenfunction ψα(z) is an entire function and,

(ψα(z), ψ ′
α(z)) → 0

as |z| → ∞, for arg(z) in each of the two Stokes angular sectors S±1(0).
On the other side, ψα(z) is purely divergent in the other three sectors S0, S±2, and has no

zeros [14] in the full angular sector of the complex plane

S = S(0) = S−2

⋃
S̄−1

⋃
S0

⋃
S̄1

⋃
S2 = {z ∈ C; |arg(iz) < π}

for large |z|.
We have the following result.

Theorem 4′. Let Eα = En,1,α(1) be the simple eigenvalue for fixed n = 0, 1, . . . , α ∈ Bn.
Then, none of the nodes of its eigenfunction ψα(z) = ψn,1,α,1(z) goes to (or comes from)

infinity on the sector

S− = {z ∈ C; |arg(iz)| � π/2} = C−.

Remark 2. Considering also theorem 2, we have the invariance of the number of nodes.

Proof of theorem 4′. Let us consider the function

fα(z) = |ψ ′
α(z)|

|πα(z)||ψα(z)| , (23)

where |πα(z)| = √|Vα(z) − Eα| diverge as |z| → ∞, |arg(iz)| � π/2, for any fixed α ∈ Bn,
Eα ∈ C.

Since ψα(z) is the analytic solution of the Schrödinger equation, with energy Eα , the zeros
of ψα(z) are simple and fα(z) diverge where ψα(z) has a zero. We have the semiclassical
behavior of ψα(z) for large |πα(z)|, so that

fα(z) → 1

as |z| → ∞ uniformly for |arg(iz)| � π/2, α ∈ Bn, Eα ∈ C. This means that no zero
of ψα(z) goes to (or comes from) infinity on the sector |arg(iz)| � π/2, for this set of
parameters. �

10
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6. Limitation of the eigenvalues

We use the same scaling as the previous section and our Hamiltonian

Hα = H1,α(1) = p2 + Vα = Hα(1) = p2 + αx2 + ix3,

E = Eα = En,1,α(1)

for fixed n = 0, 1, . . .. is an eigenvalue with eigenfunction

ψα(z) = ψn,1,α,1(z)

for fixed α ∈ Bn. Fixing a value of E, we get a Stokes complex [6] as above.
We prove the limitation of the eigenvalues En,α(1) for bounded parameters (n, α). In

particular, n = 0, 1, . . . is fixed, |α| ∈ [0, an], where an = (1/b′
n)

2/5 > 0, |arg(α)| < 2π/5.

This result forbids the disappearance or appearance of an eigenvalue En,1(β) at infinity at
a fixed β ∈ Cc. For our non-self-adjoint operators, we use an argument slightly different from
the one of [1]. We directly use the semiclassical quantization and the stability of the nodes.

Theorem 5. For any fixed n = 0, 1, . . . and α, α̂ ∈ Bn, Eα = En,1,α(1) is bounded and
continuous at α = α̂.

Proof. Let us consider the three-parameter operators

H1,α(β ′) = h̄2p2 + αx2 + i
√

β ′x3,

and the eigenvalues En,1,α(β ′) for n ∈ N. We have the spectral equivalence for positive
scaling:

H1,α(1) ∼ Hλ−1,λ2α(λ6),

so that

En,1,α(β ′)(1) = En,λ−1,λ2α(λ6),

for n ∈ N, λ > 0.

Because of the analyticity of the family of operators Hα = H1,α(1), the limitation of the
eigenvalue Eα = En,1,α(1) implies its continuity.

We prove the limitation by absurd. �

Let us fix n ∈ N, and α̂, 0 � â = |̂α| � an, |arg(α̂)| � 2π/5 for â �= 0, and suppose
|Eα = En,1,α(1)| → ∞ as α → α̂.

For α near α̂, we scale the Hamiltonian and use the identity:

λ6/5En,1,α(1) = En,h̄,α′(1) = Eα′ := s = exp(iφ),

where

s = s(α), λ = h̄ = |En,1,α(1)|−5/6 > 0, α′ = λ2/5α, |φ| < π/2.

We set

s0 = s(α̂), |s0| = 1.

Thus, we study the semiclassical eigenvalue problem Hα′ψα′ = sψα′ , where Hα′ = Hh̄,α′(1),

by the Bohr–Sommerfeld quantization rule (semiclassical phase-integral quantization). For
small h̄, we have

n = 1

2iπ

∮
γ

ψ ′
α′(z)

ψα′(z)
dz = i

1

2πh̄

∮
γ

πs(z) dz − 1

2
+ O(h̄), (24)

where n is the number of nodes.

11
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Remark 3. This quantization rule is obtained by the WKB approximation on the line of
classical motion for z ∈ A+ = A+(E), with the choice of the subdominant solution,

ψ ′
α′(z)

ψα′(z)
= −1

h̄
πs(z) − 1

2

πs(z)
′

πs(z)
+ O(h̄),

continued at the hedges of the cut on the short Stokes line S(s).

Thus, the Bohr–Sommerfeld quantization rule reads

Jα(s) = i
∮

γ

πs(z) dz = 2
∫

S(s)

ps(z) dz = π(2n + 1)h̄ + O(h̄2), (25)

where the phase of πs(z) = √
V (z) − s is defined on the anti-Stokes line A+, so that∫ z

z+
πs(z) dz > 0 along A+, and

∫ z

z−
ps(z) dz > 0 along S(s) by definition.

The two turning points have the limit values z+ → (−is)1/3, z− → z+ exp(−2iπ/3) as
α′ → 0, so they are confined on the fixed compact domain � ∈ C− with the n nodes (see
theorem 2). The path γ = ∂� is oriented in the positive sense.

The limit α → α̂ implies s → s0, α′, h̄ → 0, and

Jα(s) → Jα̂(s0) = i
∮

γ ′

√
iz3 − ε̂ dz = s

5/6
0 i

∮
γ ′′

√
iy3 − 1 dy

= s
5/6
0

∮
γ ′′

√
1 − iy3 dy = s

5/6
0 2�(2 exp(−iπ/6)

∫ 1

0

√
1 − x3 dx)

= s
5/6
0 4 sin

(π

3

) ∫ 1

0

√
1 − x3 dx

= s
5/6
0 2

√
π sin

(π

3

) �(1 + (1/3))

�((1/3) + (3/2))
�= 0,

(26)

where y = z(s0)
−2/3, and where the phase of

√
iz3 − s0 vanishes as |z| → ∞, for

arg(z) = −π/6, and where γ , in this semiclassical approximation, has been distorted to
a regular path γ ′ encircling the origin and both the turning points z±, and rescaled to the
path γ ′′.

As a result, for the left-hand side of equation (25) we have

Jα(s) → 0, (27)

as α → α̂, h̄ → 0, s → s0, in contradiction with the limit of the left-hand side of equation
(25), as written in equation (26). The proof is similar for α̂ = 0. Let us note that the same
analysis gives the correct semiclassical behavior of the eigenvalues [7], [5], for large n. From
equations (26) and (25), we have

s
5/6
0 2

√
π sin

(π

3

) �(1 + (1/3))

�((1/3) + (3/2))
∼ π(2n + 1)h̄,

where

s0 = En(h̄, 0, 1) →
(

�[(3/2) + (1/3)]Ĵ

2
√

π sin(π/3)�[1 + (1/3)]

)6/5

,

as n → ∞, 2nh̄π → Ĵ > 0 [7].
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7. Absence of non-perturbative eigenvalues

We prove here that all the eigenvalues of our problem are perturbative. Our proof is based
on the exclusion of all the possible sources of eigenvalues at h̄ = 0. Let us consider our
semiclassical potential

Vf (z) = z2(f + iz)

f
, where f = exp(−iθ/2) �= 0.

Possible sources of eigenvalues are the stationary points acting as trapping points. The
stationary points are defined by

V ′
f (z) = z(2f + 3iz)

f
= 0,

giving the solutions

z = 0, zd = 2if

3
.

We have

Vf (zd) = (zd)2(f + izd)

f
= −4f 2

27
:= Ed(θ), V ′′

f (zd) = (2f + 6izd)

f
= −2 < 0.

The negativity of the second derivative allows us to call top resonances the possible levels
with states concentrated near zd as h̄ → 0 with zeros along one of the Stoke lines defined by
the condition:

�(
√±i(z − zd)) = 0.

We shall prove that such levels are non-modal, that is, the states are not on the domain of the
Hamiltonian. Actually, since zd is on the upper boundary of the strip free of zeros of the modal
solutions, a possible proof is the position of someone of such zeros for h̄ small, n = O(1/h̄).

For completeness, we consider also the anti-bound states, concentrated near the origin,
with zeros along the imaginary axis as h̄ → 0. Such states are clearly non-modal.

Let us recall [14] the 5 Stokes angular sectors of the complex z plane,

Sk(θ) =
{
z ∈ C, z �= 0;

∣∣∣∣arg(iz) +
θ

10
− 2kπ

5

∣∣∣∣ <
π

5

}
,

−2 � k � 2.

Lemma 3. The top resonances are non-modal.

Proof. For h̄ > 0, β ′ = exp(iθ), −π < θ < π, setting

z = zd − √±i y,

we get the Hamiltonians of top resonances

K±
h̄ (θ) = Ed(θ) ∓ i(h̄2p2 + y2 + i

√
±β ′y3) = Ed(θ) ∓ iHh̄(θ ± π/2)

defined on the domain of functions asymptotically vanishing in the two sectors

(S∓1(θ), S±2(θ)),

respectively. We remember [3] that we have stability of the eigenvalues for |θ | < 3π/2, or |θ±
π/2| < π. The small h̄ behavior of the eigenvalues, En,h̄(θ ± π/2) = h̄(2n + 1) + O(h̄2) of
Hh̄(θ ± π/2), gives the behavior of the eigenvalues of K±

h̄ (θ),

E±
n,h̄(θ) = Ed(θ) ± h̄(2n + 1) + O(h̄2).

13
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The eigenfunctions, φ±
n,h̄,θ (z) have nodes on the lines

�(
√±i(z − zd)) = 0,

and for small h̄ and n = O(1/h̄), about one half of the nodes are on the forbidden strip
0 � �(z) � y+. This means that the eigenfunctions are non-modal. �

Lemma 4. The anti-bound states are non-modal.

Proof. For h̄ > 0, β ′ = exp(iθ), −π < ±θ � π/2, setting,

z(y) = ±iy,

we get the Hamiltonians of anti-bound states,

Ĥ±
h̄ (θ) = −(h̄2p2 + y2 ∓

√
β ′y3) = −Hh̄(θ ± π),

defined on the domain of functions vanishing at ∞ in the two sectors

(S±2(θ), S0(θ)),

respectively. We remember [3] that we have stability of the eigenvalues for |θ | < 3π/2, or
−π < ±θ < π/2. The small h̄ behavior of the eigenvalues En,h̄(θ ±π/2) = h̄(2n+1)+O(h̄2)

of Hh̄(θ ± π/2) gives the behavior of the eigenvalues of Ĥ±
h̄ (θ),

Ê±
n,h̄(θ) = −h̄(2n + 1) + O(h̄2).

The eigenfunctions φ±
n,h̄,θ (z) have nodes on the line �(z) = 0, and for small h̄ and n = O(1/h̄),

about one half of the nodes are on the forbidden strip 0 � �(z) � y+. This means that the
eigenfunctions are non-modal. �

Thus, Lemmata 3 and 4 prove the following theorem:

Theorem 1′. For any fixed n ∈ N, the eigenvalue En,1(β), β ∈ Cc, is simple and is given by
the unique continuation of the eigenvalue of theorem 1. Its label n is the number of nodes of
its eigenfunction, as it appears in the Bohr–Sommerfeld quantization rule.

8. The power law behavior at infinity

We prove here the algebraic behavior of the eigenvalues for large parameter. We use the
scaling formula

√
αEn,1(β) = En,α(1)

for n ∈ N, where α = β−2/5. Let us recall that theorem 4, in the special case of α0 = 0,

implies continuity and limitation of each eigenvalue En,α(1) in the limit α → 0.

The analyticity, of type A, of the family of operators Hα(1) (see [2] theorem 2.10), with
the control of the nodes, and the simplicity of the spectrum imply the stability at α = 0 and
α−analyticity in a neighborhood of the origin of each eigenvalue En,α(1).

Therefore, if α = β−2/5,
√

αEn,1(β) = En,α(1) → En,0(1) for β → ∞. Thus, for b
large, En,α(β) grows as b1/5, and has an algebraic singularity there:

En,1(β) = β1/5En,β−2/5(1) ∼ β1/5En,0(1).

Let us note that we have arg(En,1(b exp(±iπ))) → ±π/5, and

±b−1/5�(En,1(b exp(±iπ))) → En,0(1) sin(π/5) > 0,

as b → ∞.
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9. Global analyticity, symmetry, and Padé summability on the cut plane

Let E(β) = En,1(β), n = 0, 1, 2, . . .

f (β) = E(β) − E(0)

β
,

f (β) is bounded holomorphic on the completed cut complex plane C̄c = {β ∈ C;β �= 0,

|arg(β) = θ | � π} (see theorems 1, 2, 3′, 4). Moreover, we have the symmetry of the
eigenvalues: En,1(β) = Ēn,1(β̄), so that we have f (β) = f̄ (β̄). By the Cauchy theorem, we
have

f (β) = 1

2iπ

∮
γ

f (z)

z − β
= 1

2iπ

∮
γ

1

1 − (β/z)

f (z)

z
dz =

∫ ∞

0

1

(1 + βx)
ρ(x) dx,

where γ is any curve turning around β in the positive way. We have the dispersion relation of
a Stieltjes function, where

ρ(1/b) = −b(f (−b + i0+) − f (−b − i0+))/2iπ

= −b�f (−b + i0+)/π = �En(−b + i0+)/π � 0,

by lemma 1. We have the asymptotics to the formal power series:

f (β) ∼ 
(β) =
∞∑

j=0

aj (−β)j

for |β| small, where

aj = |cj+1| =
∫ ∞

0
xjρ(x) dx (28)

are the moments of the measure ρ(x) dx. Thus, the moment problem

aj = |cj+1| =
∫ ∞

0
xj dμ(x) (29)

has the solution dμ(x) = ρ(x) dx. Because of the bound on the perturbation coefficients
|cj | < ACjj ! (see theorem 1 and [2, 3]), the Carleman theorem condition (see [22] page 330)
is satisfied, ∑

n

(1/an)
1/2n = ∞,

and the uniqueness of the solution dμ(x) = ρ(x) dx.

Let us recall the definition of the diagonal Padé approximants Rn
n(β) of the formal power

series 
(β) = ∑∞
j=0 aj (−β)j , with partial sums 
N(β) = ∑N−1

j=0 aj (−β)j , β ∈ C. The
diagonal Padé approximants, Rn

n(β), n � 0, are the rational fractions

Rn
n(β) = Pn(β)

Qn(β)
,

where Pj (β),Qj (β) are the polynomials of degree j , with the condition Qj(0) = 1, defined
by the asymptotic condition,

∣∣Rn
n(β) − 
2n+1(β)

∣∣ = O(β2n+1), for |β| → 0. As a general
result, the Padé approximants Rn

n(β) on Stieltjes asymptotic expansions do not have poles or
zeros on the complex cut plane, and there converge

Rn
n(β) → fμ(β) =

∫ ∞

0

1

(1 + βx)
dμ(x),

where dμ is a measure solution of the moment problem (29). In this case, necessarily we have
dμ(x) = ρ(x) dx and fμ(β) = f (β).
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Thus, we have the result:

Theorem 6. The function

f (β) = E(β) − E(0)

β

is a Stieltjes function,

f (β) =
∫ ∞

0

1

(1 + βx)
ρ(x) dx, (30)

for β on the cut complex plane, where

ρ(1/b) = �(En(−b + i0+))/π > 0, (31)

and

ln(ρ(x)) = −C−1x(1 + O(ln(x)/x)), (32)

where C−1 = 8/15 = 2B(2, 3/2) = A(0) (see (15) and [17]), for large positive x. The
diagonal Padé approximants of the perturbation series, converge to f ,

Rn
n(β) → f (β),

as n → ∞, uniformly for β on compacts of the cut complex plane.

Proof. The inequality (31) is proved by the PT symmetry of the eigenfunctions and
eigenvalues En(−b + i0+) − En(−b − i0+) = 2i�(En(−b + i0+)) and by lemma 2. We have
only to discuss the asymptotic behavior of the discontinuity function.

For the semiclassical behavior of the discontinuity (32), we consider the semiclassical
scaling where b > 0 plays the role of a semiclassical parameter, with the Gamow condition at
−∞:

H(b,−π) ∼ bH(1, 1, b exp(−iπ)).

In the case of the semiclassical operator H(b,−π), we have a ‘double-well problem’, with
the barrier action C−1 = 8/15 (15), and h̄ = b. This value of the barrier implies the behavior
of ρ(x), as x → ∞, as given in (32), and the behavior of the perturbation coefficients
cj = (−1)j aj−1, aj = ∫ ∞

0 xj dρ(x), aj ∼ DCjj !, as j → ∞, for some D > 0, compatible
with the behavior:

cj = (−1)j−14
√

15Cj(2π)−3/2�(j + 1/2)(1 + O(1/j)),

for large j , obtained numerically [9] in the case of n = 0. �

Remark 4. We have proved, in a new way, that each eigenvalue E(β) = En,1(β), n = 0,

1, 2, . . ., is simple and positive for positive β:

E(β) = E(0) + βf (β) = E(0) + β

∫ ∞

0

1

(1 + βx)
ρ(x) dx � E(0),

and En,1(β) ∼ β1/5En,0(1) for large positive β.
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